
www.manaraa.com

Informatics in Education, 2015, Vol. 14, No. 2, 143–160
© 2015 Vilnius University
DOI: 10.15388/infedu.2015.09

143

Programming Language Use in
US Academia and Industry

Latifa BEN ARFA RABAI1, Barry COHEN2, Ali MILI2

1 Institut Superieur de Gestion, Bardo, 2000, Tunisia
2 CCS, NJIT, Newark NJ 07102-1982 USA
e-mail: latifa.rabai@isg.rnu.tn, barry.cohen@njit.edu, ali.mili@njit.edu

Received: July 2014

Abstract. In the same way that natural languages influence and shape the way we think, program-
ming languages have a profound impact on the way a programmer analyzes a problem and formu-
lates its solution in the form of a program. To the extent that a first programming course is likely
to determine the student’s approach to program design, program analysis, and programming meth-
odology, the choice of the programming language used in the first programming course is likely
to be very important. In this paper, we report on a recent survey we conducted on programming
language use in US academic institutions, and discuss the significance of our data by comparison
with programming language use in industry.

Keywords: programming language use, academic institution, academic trends, programming lan-
guage evolution, programming language adoption.

1. Introduction: Programming Language Adoption

The process by which organizations and individuals adopt technology trends is complex,
as it involves many diverse factors; it is also paradoxical and counter-intuitive, hence
difficult to model (Clements, 2006; Warren, 2006; John C, 2006; Leo and Rabkin, 2013;
Geoffrey, 2002; Geoffrey, 2002a; Yi, Li and Mili, 2007; Stephen, 2006). This general
observation applies to programming languages in particular, where many carefully de-
signed languages that have superior technical attributes fail to be widely adopted, while
languages that start with modest ambitions and limited scope go on to be widely used in
industry and in academia. In (Dios, Mili, Wu and Wang, 2005) we used an empirical ap-
proach to build a statistical model that captures the evolution of programming language
adoption by a variety of stakeholder classes (industry, academia, government, etc), and
in (Bai and Mili, 2011; Ben Arfa Rabai, Bai and Mili, 2011; Ben Arfa Rabai, Bai and
Mili, 2009) we generalize this model to a broader class of software technology trends.

In this paper, we present factual data on the adoption of programming languages
in academia and industry, and attempt to identify trends over time, by comparing cur-

www.manaraa.com

L. Ben Arfa Rabai et al.144

rent data against 2010 data; we also analyze possible cross-influences between adoption
trends in academia and industry; we also analyze possible correlations between language
adoption decisions in academia and institutional rankings. This information may be of
interest to academic decision makers, as they may want to consider what languages are
being used across academia, and may be of interest to industry decision makers and
recruiters, as they contemplate what background graduating students have in terms of
knowledge of programming languages and paradigms.

2. Programming Language Adoption in Industry

The Tiobe Software company (http://www.tiobe.com) offers one of the most
comprehensive, and most timely, surveys of programming language use. This survey
appears to use online resources to assess the use of programming languages in industrial
practice worldwide, and updates its estimates on a monthly basis. For our purposes,
we are interested to review the degree of usage of the most common programming lan-
guages as of April 2013; in order to analyze evolutionary trends, and to compare with
the data we collected on the use of programming languages in academia, we also record
usage data for April 2010. This data is shown in the Table 1:

Table1
Tiobe Programming Community Index, 2010–2013

Language Rank
2013

Percentage
2013

Rank
2010

Percentage
2010

Evolution
Percentage

Evolution
Rank

C 1 17.86 1 18.06 –0.20 0
Java 2 17.68 2 18.05 –0.37 0
C++ 3 9.71 3 9.71 0.01 0
Objective-C 4 9.60 11 2.29 7.31 7
C# 5 6.15 6 4.43 1.71 1
PHP 6 5.43 4 9.66 –4.23 –2
Visual Basic 7 4.70 5 6.39 –1.69 –2
Python 8 4.44 7 4.20 0.24 –1
Perl 9 2.33 8 3.55 –1.22 –1
Ruby 10 1.97 12 2.22 –0.25 2
JavaScript 11 1.51 10 2.47 –.096 –1
VB .NET 12 1.09
Lisp 13 0.90
Pascal 14 0.89 16 0.65 0.24 2
Delphi 15 0.84 9 2.71 –1.87 –6
Bash 16 0.84
Transact-SQL 17 0.72
PL/SQL 18 0.71 14 0.71 0.00 4
Assembly 19 0.71
Lua 20 0.65 20 0.52 0.13 0

www.manaraa.com

Programming Language Use in US Academia and Industry 145

Interestingly, the three top contenders remain the same, and in the same order, name-
ly C, Java then C++. The big winner, in terms of positive evolution over the three year
period is Objective-C, which jumps forward a full seven ranks, thanks to an increase of
7.310 in its adoptive population. The biggest loser in terms of adoptive population is
PHP, which loses 4.234 percent of the programmer population; and the biggest loser in
terms of ranking is Delphi, which drops by six positions (from 9th to 15th). In the next
section we explore the ranking of languages in academia.

Considering alternative sources of information, we have looked at data from the site
http://langpop.com/, which dates back to the same period (Fall 2013). Specifi-
cally, we have focused on two metrics that this site is interested in, namely:

Programming language use. ● In this metric, the authors attempt to gauge the level
of use of programming languages by combining data from a variety of sources,
including google search (a generic search for references to programming langua-
ges), github (a search that focuses on open source software), google files (a search
of files with language-specific extensions), craigslist (a search of job postings
on craigslist), Ohloh (which measures the number of programmers contributing
code to open source projects). We ran the normalized computation on the basis
of github and google search (assigning a weight of 0 to the other three), giving
google search a weight of 2 and github a weight of one, because google search is
more generic (whereas github is specific to open source). We give the other three
a weight of zero: google files because it is biased (some languages generate more
files per application than others), ohloh because it is redundant with github (which
is more widely known and used), and craigslist because its data is incidental (it
is a broad spectrum site, in which software job posting are only a small fraction,
and is not the prime destination of software professionals). With these weights, we
find the following twenty languages at the top: C, Java, C++, Objective-C, PHP,
JavaScript, Python, Ruby, C#, Visual Basic, Perl, Shell, SQL, Delphi, ASP, As-
sembler, Scala, Cobol, Pascal, Lua. Out of these twenty languages, a full sixteen
are in the Tiobe survey; and the four top languages (i.e. C, Java, C++, Objective-C)
are in the same order in the two lists.
Programming language interest. ● It has always been our belief, and our observa-
tion, that what makes a language popular is not necessarily its intrinsic quality
attributes, but a host of incidental environmental and circumstantial extrinsic fac-
tors; so that we feel vindicated that the site http://langpop.com/ finds it
necessary to survey languages according to their level of interest, in addition to
a survey based on language usage. To this effect, they collect data from sites that
programmers visit to talk about programming languages; they argue that what
languages programmers are interested in, and are experimenting with, are not
necessarily the same as what languages programmers are paid to use. The site
refers to three sources, namely: Lambda the Ultimate, which is rather academi-
cally oriented, and attracts programming language researchers; programming.
reddit.com, which is a combined news site/ social networking site for program-
mers; and slashdot.org, which has a similar audience to reddit, but is smaller and
less influential. We computed normalized results by giving reddit a weight of 2

www.manaraa.com

L. Ben Arfa Rabai et al.146

and Lambda a weight of 1 (to lower its impact, since it is academically oriented
and we are interested in industrial trends) and Slashdot a weight of 1 (due to its
lower impact/ importance). The resulting table provides the following list as the
twenty most interesting programming languages far the Fall 2013: Java, Java
Script, Python, PHP, Perl, C++, Ruby, C, SQL, Lisp, Scheme, Haskell, C#, Shell,
D, Erlang, Cobol, Assembler, Scala, Objective C. Out of these languages, only
thirteen are part of the Tiobe survey, and many that are in both surveys are at
widely different ranks.

Another source of programming language use in industry is RedMonk, which shows
a table of language usage in two forums, namely Stack Overflow (an open forum for
professional programmers) and GitHub (an open source forum). In the right hand cor-
ner of the chart, RedMonk shows the languages that are the quarter percentile of both
rankings; these include Java, Java Script, PHP, Python, C++, Ruby, C#, C, CSS, Objec-
tive C, R, Perl, Shell, Scala, and Haskell. Of these, ten are among Tiobe’s list of twenty
top languages.

In a recent posting on http://www.mashable.com, Todd Wasserman lists the
following languages as important languages that a modern programmer ought to know:
Java, Java Script, C#, PHP, C++, Python, C, SQL, Ruby, Objective C, Perl, .NET, Visual
Basic, R, Swift. These languages are selected and ordered on the basis of their impor-
tance for programmers at the high end of the pay scale, according to the online learning
platform Lynda (http://www.lynda.com/). Out of these fifteen languages, no less
than thirteen show up in Tiobe’s list for April 2013 (whereas the mashable list is dated
2015, it must be noted).

Overall, it is fair to consider that the Tiobe list is a faithful indicator of the state of
the practice in language usage in the software industry.

3. Programming Language Adoption in Academia

During the spring semester 2013 (January to April 2013) we have conducted a survey
across US institutions of higher education, collecting data on programming language use
for teaching; specifically, we collected the following data:

What programming language is used for the first computing course; some insti- ●
tutions (such as NJIT, for example) have an introductory computing course that
precedes the first programming course, and is a prerequisite thereof. Such a course
is intended to expose incoming freshmen to general computing concepts, inclu-
ding (but not limited to) programming; hence the programming part of the course
is covered using a user-friendly language that is not necessarily the language of
their first programming course.
What programming language is used for the first programming course? The focus ●
of this course is to teach programming using a programming language as a me-
dium, though it is not uncommon for this course to be geared towards teaching the

www.manaraa.com

Programming Language Use in US Academia and Industry 147

programming language as much as (or more than) it is geared towards teaching a
programming discipline.
What programming language is used for the first data structures course? Of course, ●
this is most typically the same language as that used for the first programming
course, but sometimes (more often than we thought) they are different.
What languages are covered in the programming language course; this is typically ●
a junior level course that explores general issues of programming languages, such
as programming language analysis, programming language design, programming
language processing, programming language compilers and interpreters, and pro-
gramming paradigms, and exposes students to some programming languages for
practical assignments.

In order to record evolutionary trends, we have collected this data for the spring
semester 2013 and the spring semester 2010. We have collected this data for 134 institu-
tions across the US, ranked 1 to 134 in the latest US News and World Report Survey.
For the Spring 2013 semester, this data is collected by merely inspecting relevant course
catalogs, course schedules and (when available) course sites. For the Spring semester
2010, it is more difficult to collect this data, as it requires that we find three year old
course sites, course catalogs, or course syllabi; occasionally we had to write individual
emails to instructors and/or administrators, with limited success; hence we have fewer
data points for 2010 than for 2013.

3.1. First Programming Course

Table 2 shows the data pertaining to the programming language used in the first pro-
gramming course in the spring semester 2013 and the spring semester 2010.

Table 2
Programming Language Adoption in Academia, 2010–2013

First programming Course

Language Rank
2013

Percentage
2013

Rank
2010

Percentage
2010

Evolution
Percentage

Evolution
Rank

Java 1 44.44 1 51.66 –7.22 0
C++ 2 19.26 2 26.66 –7.41 0
Python 3 17.04 4 5.00 12.04 1
C 4 13.33 3 10.00 3.33 –1
MatLab 5 1.481 6 1.66 –0.18 1
C# 6 0.74 7 0.00 0.74 1
Haskell 6 0.74 7 0.00 0.74 1
PHP 6 0.74 7 0.00 0.74 1
JavaScript 6 0.74 7 0.00 0.74 1
Scheme 6 0.74 5 3.33 –2.59 –1
Racket 6 0.74 7 0.00 0.74 1
Ruby 7 0.00 6 1.66 –1.66 –1

www.manaraa.com

L. Ben Arfa Rabai et al.148

Before we compare these results with the Tiobe data, we need to make the following
observations:

While the data in this table pertains exclusively to academic institutions, the data ●
collected by Tiobe Software is based on “the number of skilled engineers world-
wide, courses, and third party vendors”. Assuming that “courses” refer to industri-
al courses, in addition, possibly to academic courses, we feel it is fair to consider
that the Tiobe data reflects primarily the industrial trends of the moment.
While our data pertains exclusively to US academic institutions, the ● Tiobe data
reflects industrial practice worldwide. We see no compelling reason to believe
that industrial practice in the US (in terms of programming language preferences)
should be radically different from industrial practice elsewhere, but we need to be
mindful of this qualification.

With these qualifications in mind, we make the following observations:
C, Java and C++ are in the top four languages in academia and in industry, in 2010 ●
and in 2013. But while C is ranked #1 in industry in 2001 and 2013 (perhaps due
to the weight of legacy software), it is ranked 4th in academia in 2013, and 3rd in
2010. Academic institutions have more latitude in switching between languages
than does industry.
The distribution of languages in academia is less uniform than the distribution of ●
languages in industry: Java is ranked first in academia with a whopping 44.44%,
whereas C is ranked first with a mere 17.862%.
Another language to watch, besides the three top languages cited above, is Python. ●
With 17.037 % of the market share in academia in 2013, it is nearly as prevalent
as the top languages in industry (17.862% for C, and 17.681% for Java). Perhaps
more interestingly, its presence jumps from 5.00% in 2010 to 17.037% in 2013. In
industry, this language garners 4.442% of the market in 2013, slightly up from its
showing of 2010 (4.205 %).
Among the languages that are used in industry but shunned in academia, it is ●
worth pointing to Object-C, whose market share is a significant 9.598 %, and to
C#, whose market share in industry is 6.150 %.
Some of the languages that appear in academia but not industry include MatLab, ●
Haskell, Scheme and Racket. The rationale for using a language that is not used in
industry is that we want a language that best supports a programming discipline,
and that once students acquire a sound discipline, migrating to another language
is a simple matter (Yi, Li and Mili, 2007).

In order to get a clearer sense of which languages are gaining ground in academia
(in a first programming course), and which languages are losing ground, we have con-
sidered the four top languages of the table above and recorded how universities have
(or have not) changed their adopted language from 2010 to 2013. The results are sum-
marized in the matrix below, where rows represent the languages adopted in 2010 and
columns represent the languages adopted in 2013. The diagonal represents the number
of institutions that have maintained their choice of language, and outside the diagonal
we represent the number of institutions that have moved from the language represented

www.manaraa.com

Programming Language Use in US Academia and Industry 149

in row to the language represented in column. From this table, it is clear that Python is
showing the greatest positive evolution (loss of 1, gain of 5), even though it currently
has the lowest adoption rate.

An interesting question that we want to explore is whether the choice of languages
for the first programming course is correlated with institutional rank; to this effect, we
divide our sample of 134 institutions into four quartiles according to their ranking in the
latest US News and World Report survey (1 to 33, 34 to 66, 67 to 99, and finally 100 to
134). For completeness, we have also added a column for language adoption in MOOCs
(Massive Open Online Course), including sites such as Coursera, edX, Udacity, Udemy,
Codecademy, Lynda.com and Treehouse. The results, which we limit to the nine top
languages of Tiobe’s survey for April 2013, are summarized in the Table 3:

The only trend that appears to be monotonic is the percentage of adoption of C++,
which increases from 14.286 % for first tier institutions to 34.286 % for fourth tier insti-
tutions. From the first tier to the third tier, the adoption of Java drops precipitously, and
is compensated almost perfectly by the adoption of Python. Except for the fact that it
includes many languages (such as Ruby, JavaScript, CSS, HTML, HTML5) that are not
part of the sample, the set of languages adopted by MOOCs looks closer to the column of
top tier universities (ranks 1 to 33); many of the MOOCs are operated by top-tier institu-
tions, which justifies this observation.

2013
2010

C++ Java Python C Loss

C++ 16 1 1 2
Java 1 29 4 1 6
Python 5 1 1
C 2 1 7 3
Gain 1 3 5 3

Table 3
Programming Language Adoption vs. Institutional Ranking First Programming Course, 2013

Language Institutional Ranking MOOCS
1 to 33 34 to 66 67 to 99 100 to 134

C 14.29 16.67 11.76 11.43 7.77
Java 60.71 46.67 35.29 42.86 15.55
C++ 14.29 16.66 23.53 34.29 7.77
Objective-C 0.00 0.00 0.00 0.00 0.00
C# 3.57 0.00 0.00 0.00 7.77
PHP 3.57 0.00 0.00 0.00 4.44
Visual Basic 0.00 0.00 0.00 0.00 0.00
Python 3.57 20.00 29.41 11.43 10.00
Perl 0.00 0.00 0.00 0.00 0.00

www.manaraa.com

L. Ben Arfa Rabai et al.150

3.2. First Data Structures Course

Whereas, for the sake of convenience, it is natural to use the same programming language
in the first programming course and the first data structures course, there is also some
rationale for using different languages. Indeed, one may argue that these two courses deal
with distinct/orthogonal programming disciplines (top down versus bottom up) and dis-
tinct design approaches (functional decomposition versus data modeling). Hence we were
only moderately surprised, though surprised nevertheless, when we found that a full 32 %
of institutions in our sample used different languages in the first programming course and
the first data structures course. Table 4 shows, side by side, the percentage of languages
used for the first programming course and the first data structures course in our sample.

The difference between the distribution of languages in the first programming course
and the distribution of languages in the first data structures course is sufficiently large to
indicate that in fact, institutions do not automatically adopt the same language for these
two courses. The following table (Table 5) further elucidates this observation by show-
ing how institutions are distributed in terms of language adoption for the first program-
ming course (in rows) and for the first data structures course (in columns) – where we
restrict our attention to the main languages cited in section 3.1.

3.3. First Computing Course

Most universities we have surveyed offer a first computing course distinct from the
first programming course, though it includes a significant programming component. By
contrast with the first programming course, which focuses specifically on teaching a
programming discipline, the first computing course introduces students to a wide range
of computing topics, and is usually used as a prerequisite to subsequent CS courses, and/

Table 4
First Programming Course, versus First Data Structures Course, 2013

Language 1st Programming Course 1st Data Structures Course
Rank Percentage Rank Percentage

Java 1 44.44 1 46.73
C++ 2 19.26 2 44.60
Python 3 17.04 4 2.80
C 4 13.33 3 4.67
MatLab 5 1.48 6 0.00
C# 6 0.74 6 0.00
Haskell 6 0.74 6 0.00
PHP 6 0.74 6 0.00
JavaScript 6 0.74 6 0.00
Scheme 6 0.74 5 0.93
Racket 6 0.74 6 0.00
Ruby 7 0.00 6 0.00

www.manaraa.com

Programming Language Use in US Academia and Industry 151

or as an introductory computing course for non CS majors. Programming languages for
the first computing course have to meet a different set of requirements from those of
programming courses; they are typically chosen for their user-friendliness, their ease of
learning and their ease of use, rather their relevance in industry. Hence it is not surprising
that very few universities (only 2 out of our sample of 134) use the same programming
language for the first computing course and the first programming course. Our data is
summarized in Table 6:

Two observations are striking: First, the choice of programming language for the first
computing course appears to be taken without consideration for what is in vogue in indus-
try; second, this decision appears to be in flux, in light of the broad swings that we find
in adoption figures between the 2010 data and the 2013 data. It bears pointing out that
we have far less data for 2010 than we have for 2013, due to the difficulty of collecting
archival data. Table 7 shows the adoption pattern as a function of institutional ranking.

3.4. Programming Languages Course

Whereas languages for the first computing course are chosen for their ease of use, where-
as languages for the first programming course are chosen with an eye on the market, and
whereas languages for the first data structures course are chosen to support data structure
representation and manipulation, languages for the programming languages course are
chosen for their educational value (if they embody a meaningful/ unique programming
paradigm), their design attributes (if they capture meaningful design principles), or their
historical significance (if they have influenced subsequent languages, or spawned many
variations). Consequently, the list of languages chosen for the programming language
course cover a broader range than the earlier lists, and include older languages, and less
mainstream languages; also, because of the criteria used to select these languages, they
tend to evolve more slowly from year to year, as they are not subject to market pressures.
Our data is summarized in Table 8:

Table 5
Transitions from First Programming Course to First Data Structures Course

Data Structures

Programming

C Java C++ Python Java
Script

C# MAT
LAB

Haskell PHP

C 3 6 8
Java 3 42 15 1
C++ 2 5 21 1
Python 2 7 9 1
Java Script 1 1
C# 1
MATLAB 1 1 1
Haskell 1
PHP 1 1

www.manaraa.com

L. Ben Arfa Rabai et al.152

Among the top fifteen languages, we find Prolog ranked very high, in second posi-
tion, even though it is nowhere to be seen in the Tiobe survey, nor in the list of program-
ming languages used in other courses; this language is used as a vehicle for discussing
logic programming. Another impressive showing is the collective figure of functional

Table 6
 Programming Language Adoption in Academia, 2010–2013

First Computing Course

Language Rank
2013

Percentage
2013

Rank
2010

Percentage
2010

Evolution
Percentage

Evolution
Rank

MATLAB 1 26.15 12 0.00 26.15 11
Python 2 23.08 2 16.67 6.41 0
Visual Basic 3 12.31 4 5.56 6.75 1
Scratch 4 4.61 12 0.00 4.61 8
JavaScript 5 3.08 4 5.56 –2.48 –1
Alice 5 3.08 12 0.00 3.08 7
Fortran 5 3.08 4 5.56 –2.48 –1
HTML 5 3.08 4 5.56 –2.48 –1
Racket 10 1.54 12 0.00 1.54 2
Ruby 10 1.54 12 0.00 1.54 2
Scheme 10 1.54 4 5.56 –4.02 –6
Mathematica 10 1.54 12 0.00 1.54 2
C 10 1.54 4 5.56 –4.02 –6
Sway 10 1.54 12 0.00 1.54 2
Maple 10 1.54 4 5.56 –4.02 –6
Second Life 10 1.54 12 0.00 1.54 2
C++ 10 1.54 3 11.11 –9.57 –7
Java 10 1.54 1 27.78 –26.24 –9
PHP 10 1.54 4 5.56 –4.02 –6
CSS 10 1.54 12 0.00 1.54 2

Table 7
 Programming Language Adoption vs. Institutional Ranking

First Computing Course, 2013

Language Institutional Ranking
1 to 33 34 to 66 67 to 99 100 to 134

MATLAB 27.78 38.46 50.00 26.67
Python 44.44 38.46 0.00 13.33
Visual Basic 0.00 15.38 33.33 26.67
Scratch 11.11 7.69 0.00 6.67
JavaScript 11.11 0.00 0.00 0.00
Alice 5.56 0.00 16.67 0.00
Fortran 0.00 0.00 0.00 13.33
HTML 0.00 0.00 0.00 13.33

www.manaraa.com

Programming Language Use in US Academia and Industry 153

programming languages, which include Scheme (ranked 4th), Haskell (ranked 6th), ML
(ranked 7th), Lisp (ranked 8th), OCAML (ranked 10th), SML (ranked 13th), and CAML
(ranked 21); together, they account for a total of 32.772 %, and support the practice
of functional programming. The interest of Ada (ranked 10th) is that it was developed
through a worldwide competition, and that it embodies the state of the art in language
design for its era (late seventies/ early eighties); it has many advanced features, that
are not found in any of the languages that are currently in use. Smalltalk (ranked 15th),
Simula (ranked 21st) and Modula (also ranked 21st) are languages that support modular
programming by providing object oriented functionalities. As far as evolution between

Table 8
Programming Language Adoption in Academia, 2010–2013

Programming Language Course

Language Rank
2013

Percentage
2013

Rank
2010

Percentage
2010

Evolution
Percentage

Evolution
Rank

Java 1 13.02 2 11.76 1.26 1
Prolog 2 11.76 1 12.50 –0.73 –1
C++ 3 10.92 3 10.29 0.63 0
Scheme 4 9.66 3 10.29 –0.63 –1
Python 5 7.56 5 8.82 –1.26 0
Haskell 6 7.14 6 6.62 0.52 0
ML 7 5.46 8 5.15 0.31 1
Lisp 8 4.20 9 3.68 0.52 1
Racket 9 3.78 17 0.73 3.05 8
Ada 10 3.36 13 2.20 1.15 3
C 10 3.36 7 5.88 –2.52 –3
OCAML 10 3.36 10 2.94 0.42 0
Perl 13 2.52 10 2.94 –0.42 –3
SML 13 2.52 10 2.94 –0.42 0
SmallTalk 15 2.10 13 2.20 –0.10 –3
Algol 16 1.26 17 0.73 0.52 –3
Scala 16 1.26 17 0.73 0.52 –2
Erlang 18 0.84 27 0.00 0.84 1
Pascal 18 0.84 13 2.20 –1.36 1
Lua 18 0.84 17 0.73 0.10 9
CAML 21 0.42 17 0.73 –0.31 –5
Coq 21 0.42 17 0.73 –0.31 –1
Simula 21 0.42 27 0.00 0.42 6
Cool 21 0.42 27 0.00 0.42 6
Modula2 21 0.42 27 0.00 0.42 6
Oz 21 0.42 27 0.00 0.42 6
Salsa 21 0.42 27 0.00 0.42 6
JavaScript 21 0.42 17 0.73 –0.31 –4
Squeak 21 0.42 17 0.73 –0.31 –4
Fortran 21 0.42 17 0.73 –0.31 –4
MatLab 31 0.00 17 0.73 –0.73 –14
Ruby 31 0.00 13 2.20 –2.20 –18

www.manaraa.com

L. Ben Arfa Rabai et al.154

2010 and 2013, the empirical data bears out our expectation that the distribution of the
main languages remains relatively unchanged: the top eight languages have maintained
the same rankings between 2010 and 2013, within a limit of 1.

Table 9 shows the distribution of the top twelve languages (those with a percentage
of use greater than 3.00) divided according to institutional ranking.

Third tier institutions (ranked 67 to 99) use Java and C++ the least, and use Prolog,
Scheme, Haskell and Lisp the most. First tier institutions use OCAML the most, and
their use decreases with institutional ranking. The use of C increases monotonically
from first tier to fourth tier.

4. Cross Influences

In (Ben Arfa Rabai, Bai and Mili, 2011) we had speculated on whether and to what ex-
tent language choices in academia and industry influence each other: Industries may take
the lead in adopting a language, forcing universities to follow in a bid to better prepare
their students for the job market; conversely, universities may take the lead in adopting
a language, producing generations of students who are proficient in this language, who
in time may propagate the language in industry. To test whether our data bears out one
hypothesis or the other, we compute statistical correlations between language adoption
in 2013 by one stakeholder (academia or industry) and language adoption in 2010 by
the other stakeholder; we do so for the most common languages in our sample, namely
those that have a significant following in both academia and industry in 2013 and 2010.
For academic courses, we consider the first programming course, because it is the course
that is most likely to be influenced by industry trends, and is most likely to influence
industry trends.

Table 9
Programming Language Adoption vs. Institutional Ranking

Programming Language Course, 2013

Language Institutional Ranking
1 to 33 34 to 66 67 to 99 100 to 134

Java 17.02 16.67 10.42 20.00
Prolog 12.77 14.58 16.67 13.33
C++ 19.15 14.58 10.42 13.33
Scheme 8.51 10.42 20.83 8.89
Python 8.51 6.25 6.25 13.33
Haskell 6.38 10.42 12.50 4.44
ML 8.51 4.17 6.25 6.67
Lisp 4.25 4.17 20.83 8.89
Racket 4.25 4.17 6.25 4.44
Ada 0.00 6.25 4.17 2.22
C 2.13 4.17 4.17 4.44
OCAML 8.51 4.17 0.00 0.00

www.manaraa.com

Programming Language Use in US Academia and Industry 155

Table 10 shows the adoption figures for relevant languages in 2010 and 2013, for aca-
demia and industry; and Table 11 shows statistical correlations between these columns.
The correlations between academia 2010 and industry 2013, as well as the correlation
between industry 2010 and academia 2013 appear to be both moderate, and virtually
identical; this precludes any claim of a significant influence one way or the other (which
does not mean there is no influence, only that our data does not reveal any). What is also
possible is that while one stakeholder influences the other, it takes more than 3 years for
the effect to show.

5. Conclusion

This paper presents some factual data about the adoption of programming languages in
academia and industry, for years 2013 and 2010. Among the most striking results that
came out of our survey, we cite the following:

C, C++ and Java occupy top places in the ranking of language use in industry, and ●
in the ranking of language use in the first programming course in academia.
Virtually all of the languages that were developed in academia with the express ●
goal of supporting education are uniformly shunned by academic institutions, and
rarely used outside their home institution.

Table 10
Cross Influences, Academia and Industry 2010–2013

Languages Academia Industry
2013 2010 2013 2010

Java 44.44 51.66 17.68 18.05
C 13.33 10.00 17.86 18.06
C++ 19.26 26.66 9.71 9.71
C# 0.74 0.00 6.15 4.43
Python 17.04 12.04 4.44 4.20
Java Script 0.74 0.74 1.51 2.47
PHP 0.74 0.74 5.43 9.66
Ruby 0.00 1.66 1.97 2.22

Table 11
 Correlation between Adoption Figures 2010–2013

 Academia Industry
2013 2010 2013 2010

Academia 2013 1

Academia 2010 0,977 1
Industry 2013 0,739 0,700 1
Industry 2010 0,693 0,662 0,966 1

www.manaraa.com

L. Ben Arfa Rabai et al.156

There is no measurable cross-influence of industry and academia in terms of pro- ●
gramming language adoption, i.e. none appears to directly influence the adoption
decision of the other, at least not within the three-year lead time that we have
considered for our data collection.

A question that our data elicits is: why does industry keep using programming lan-
guages that date back to the late sixties/ early seventies (C), as well as variations thereof
(C++, Java), at the expense of more modern languages, that represent modern ideas of
language design, and feature interesting attributes such as support for modularity, excep-
tion handling, genericity, information hiding, etc. The answer to this question lies in two
orthogonal premises:

First, our investigation of software technology trends in general (Rabai ● et al.,
2011), and of programming language adoption trends in particular (YaoFei et al.,
2005) shows that intrinsic quality attributes of software artifacts play a minor role
in adoption decisions, in favor of extrinsic factors pertaining to the circumstances
in which the artifacts arose and evolved. Indeed, (YaoFei et al, 2005) analyze the
correlations of eleven intrinsic factors to the adoption of languages by practicing
programmers, and find that out of the eleven factors, only three have a correlation
greater than 0.5, and six have a correlation less than 0.1; this is further borne out
by (Meyerovitch and Rabkin, 2013) who have a section titled Extrinsic Properties
Dominate Intrinsic Ones, in which they discuss how environmental considerations
far outweigh language attributes in determining language adoption decisions. The
relative insignificance of intrinsic factors in adoption decisions is actually plain
to see even for the casual observer: how else can we explain that a language
such as C, which was developed by two lone systems programmers to help them
develop an operating system (Unix) has achieved worldwide success and has in-
fluenced so many subsequent languages, whereas a language such as Ada, which
was designed by a team of experts selected through a worldwide competition, and
embodied state of the art ideas about language design and modular programming,
would fare so poorly as to disappear completely from the scene.
Second, adoption of programming languages in industry is subject to many con- ●
straints that are not applicable in academia; these include, for example,

The cost of training programmers and analysts on a new programming lan- ○
guage, along with possibly new programming environments and new soft-
ware development processes.
The cost that stems from lower staff productivity and lower product quality ○
resulting from adopting a new programming language, until such time as the
software personnel gets up to speed on the new language.
The need to maintain staff expertise in languages that are used for legacy ○
software, so as to support software maintenance; companies will find it much
easier to manage their human resources if maintenance and new development
depended on the same expertise, than if they were compartmentalized.
Market pressures, short-term business goals, and risk aversion limit the lati- ○
tude that industry has to experiment with new languages or new paradigms,
even if these could be justified in the long run.

www.manaraa.com

Programming Language Use in US Academia and Industry 157

In (Meyerovitch and Rabkin, 2013) Meyrovitch and Rabkin conduct a detailed sur-
vey of the factors that determine programming language adoption in academia and
industry, and conclude that industry finds that “existing code, existing expertise, and
open source libraries are the main drivers of adoption”. Interestingly, they also find
that older programmers are more resistant to adopt new languages than younger pro-
grammers; given that university students are, by definition, younger than the average
industry programmer, existing expertise is a much bigger constraint in industry than it
is in academia.

By contrast, the adherence of academia to such languages in the absence of the con-
straints above is rather puzzling, especially in light of the following observations:

These languages, especially C, are woefully inadequate for the purposes of pro- ●
grammer education: they are too complex, have too many quirks, and are too
implementation-dependent (expose the underlying machinery) to serve as models
of computation for first year programming students. First year programming text-
books often make matters worse by shifting the focus of the course from teaching
a discipline of programming using a programming language to teaching the pro-
gramming language instead, including all its obscure, esoteric, quirky details.
Academia has the latitude to lead: The debate of whether academic trends should ●
lead or follow industrial trends applies to programming language choice as much
as to any technology trend. Yet, the fact that industrial developers decide on what
programming language to use based, at least in part, on their education (accord-
ing to [Meyerovitch and Rabkin, 2013]) means that academic choices do affect
industrial choices.
Academia has the means to lead: Because developers learn new languages fre- ●
quently and rapidly, a student can learn to program in one language and later
practice software development in another language with minimal cost/ effort/ dis-
ruption; hence academia does not have to select languages according to industry
choices, but ought to define and follow its own selection criteria. This supports
the view that academia should select programming languages according to purely
education criteria, rather than the myopic concern of preparing students to be im-
mediately operational on the job.
Academia has the incentive to lead: It is all the more critical for academia to ●
follow its own selection criteria that they appear to differ significantly from in-
dustrial criteria: an ideal language for education is one that favors simplicity over
computing power, and supports language-enforced correctness rather than expres-
sive constructs; yet Meyerovitch and Rabkin find that industrial developers use
the exact opposite criteria.
Academia has ample opportunity to lead: many dedicated educators and scho- ●
lars have gone to the effort and trouble of creating small programming languages
dedicated specifically for programmer education. The include: Alice [Dann et al.,
2012]; BlueJ [Koelling et al., 2003]; Haskell [Hudak, 2000]; Racket [Felleisen,
2000]; Ruby [Flanagan and Matsumoto, 2008]; Scratch [McManus, 2013], Squeak
[Ducasse, 2005]; Oz [Van Roy and Haridi, 2004]. Unfortunately, most of these
languages are barely used for the purpose of programmer education.

www.manaraa.com

L. Ben Arfa Rabai et al.158

In conclusion, we argue that academic decision makers ought to take the lead in
setting the agenda of programmer education, through the judicious selection of pro-
gramming languages that are designed for this purpose, that help the student develop
a sound discipline of programming, and that ultimately help raise the level of software
engineering education and the level of software practice. Understandably, the ACM/
IEEE taskforce on computing curricula stays clear of making any recommendations on
the choice of programming languages, because it views them as means to an educational
end, rather than an end; as a result, it reasons exclusively in terms of programming para-
digms, and makes recommendations regarding object oriented programming, functional
programming, reactive programming, logic programming, and concurrency and parallel-
ism, leaving academic decision-makers all the latitude they need to choose the languages
that best convey these paradigms.

Acknowledgements

The authors acknowledge the assistance of Kevin Lin, Rutgers University and Islem
Souid, ISG, Tunis University in collecting and compiling the data. They are also very
grateful to the anonymous reviewers for their valuable comments and suggestions, which
have greatly improved the contents of the paper.

References

ACM (2013). Computer Science Curricula 2013. Curriculum Guidelines for Undergraduate Programs in
Computer Science. December 20, 2013. ACM/IEEE Computer Society.

Agresti, A. (2002). Categorical Data Analysis (2d edition). Wiley Interscience, Florida.
Bai, Yanzhi., Mili, A. (2007). Monitoring software technology evolution, one trend at a time. In: SEDE 2007,

349–355.
Barry, B. (1981). Software Engineering Economics. Prentice Hall.
Ben Arfa Rabai, L., Bai, Y.Z., and Mili, A. (2009). Modeling the evolution of software engineering trends – a

bottom up approach. In: ICSOFT 2009, 1, 47–54.
Ben Arfa Rabai, L., Bai, Y.Z., and Mili, A. (2011). A quantitative model for software engineering trends. In-

formation Sciences, 181(22), 4993–5009.
Clements, PC. (2006). Future trends of software technology and applications: software architecture. In: Thir-

tieth Annual Conference on Computer Software and Applications.
Dann, W., Cooper, S., Pausch, R. (2012). Learning to Program with Alice. Prentice-Hall.
Ducasse, S. (2005). Squeak: Learn Programming with Robots. TIA: Technology in Action. Apress.
Felleisen, M. et al. (2001). How to Design Programs: An Introduction to Programming and Computing. MIT

Press.
Flanagan, D., Matsumoto, Y. (2008) The Ruby Programming Language. O’Reilly.
Geoffrey, A.M. (2002). Crossing the Chasm: Marketing and Selling Disruptive Products to Mainstream Cus-

tomers. Harper Collins Publishers.
Geoffrey, A.M. (2002a). Living on the Fault Line: Managing for Shareholder Value in any Economy. Harper

Collins Publishers.
Hudak, P. (2000). The Haskell School of Expression: Learning Functional Programming through Multimedia.

Cambridge University Press, New York.
Jerry, L. (2000). Statistics in reliability. Journal of the American Statistical Association, 451(95), 989–992.
John C.K. (2006). Future trends of software technology and applications: model based development. In: Thir-

tieth Annual Conference on Computer Software and Applications.

www.manaraa.com

Programming Language Use in US Academia and Industry 159

Kölling, M., Quig, B., Patterson, A., Rosenberg, J. (2003). The BlueJ system and its pedagogy. Journal of Com-
puter Science Education (Special issue on Learning and Teaching Object Technology), 13(4), 249–268.

McManus, S. (2013). Scratch programming in easy steps: covers Versions 2.0 and 1.4. In: Easy Steps Limi-
ted.

Meyerovitch, L.A., Rabkin, A. (2013). Empirical analysis of programming language adoption. In: OOP-
SLA’13, Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Program-
ming Systems Languages & Applications. ACM, New York, 1–18.

Richard, A,J. (2002). Applied Multivariate Statistical Analysis. Prentice Hall.
Roy, V., Haridi, P., Haridi, S. (2004). Concepts, Techniques and Models of Computer Programming. MIT

Press.
Stephen, S.Y. (2006). Future trends of software technology and applications. In: Thirtieth Annual Conference

on Computer Software and Applications.
Warren, H. (2006). Future trends of software technology and applications: the phone is the computer. In: Thir-

tieth Annual Conference on Computer Software and Applications.
Yaofei, C., Dios, R., Mili, A., Wu, L., Wang, K. (2005). An empirical study of programming language

trends. IEEE Software, 22(3), 72–78.
Yi, P., Li, F., Mili, A. (2007). Modeling the evolution of operating systems: an empirical study. Journal of

Systems and Software, 80(1): 1–15.

L. Ben Arfa Rabai is a University associate professor in the Department of Computer
Science at the Tunis University in the Higher Institute of Management (ISG). She re-
ceived the computer science Engineering diploma in 1989 from the sciences faculty of
Tunis and the PhD, from the sciences faculty of Tunis in 1992. Her research interest
includes software engineering trends quantification, quality assessment in education and
e-learning, and security measurement and quantification. She has published in informa-
tion sciences Journal, Computers in Human Behavior Journal, IEEE Technology and
Engineering Education magazine... She has participated in several international confer-
ences covering topics related to the computer science, E-learning, quality assessment in
education, cyber security, quantifying security...

B. Cohen is the associate dean of the College of Computing Sciences at the New Jersey
Institute of Technology (NJIT). He coordinates and is one of the teachers of the first
programming class for computing majors at NJIT (taught in Python). His primary field
of research is bioinformatics.

A. Mili holds a PhD in computer science from the University of Illinois in IL, USA and
a doctort es-siences d’etat from the Joseph Fourier University of Grenoble, France. He
is on the faculty of NJIT in Newark, NJ, USA; his research interests are in software en-
gineering and software engineering education.

www.manaraa.com

L. Ben Arfa Rabai et al.160

Programavimo kalbų naudojimas JAV aukštosiose
mokyklose ir įmonėse
Latifa BEN ARFA RABAI, Barry COHEN, Ali MILI

Kaip natūralios kalbos veikia ir formuoja mūsų mąstymą, taip ir programavimo kalbos turi
didelį poveikį tam, kaip programuotojas analizuoja problemą ir formuluoja sprendimą. Tikėtina,
kad pirmas programavimo kursas lemia studento požiūrį į programos kūrimą, programos analizę
ir programavimo metodologiją, todėl programavimo kalbos pasirinkimas pirmam programavimo
kursui yra labai svarbus. Šiame straipsnyje pristatomas tyrimas, kuris leidžia palyginti, kokių pro-
gramavimo kalbų mokoma Jungtinių Amerikos Valstijų aukštosiose mokyklose ir kokios vartoja-
mos įmonėse.

